Sparse Non-Gaussian Component Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Principal Component Analysis

Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...

متن کامل

Non-Gaussian Component Analysis with Log-Density Gradient Estimation

Non-Gaussian component analysis (NGCA) is aimed at identifying a linear subspace such that the projected data follows a nonGaussian distribution. In this paper, we propose a novel NGCA algorithm based on logdensity gradient estimation. Unlike existing methods, the proposed NGCA algorithm identifies the linear subspace by using the eigenvalue decomposition without any iterative procedures, and t...

متن کامل

Whitening-Free Least-Squares Non-Gaussian Component Analysis

Non-Gaussian component analysis (NGCA) is an unsupervised linear dimension reduction method that extracts low-dimensional non-Gaussian “signals” from high-dimensional data contaminated with Gaussian noise. NGCA can be regarded as a generalization of projection pursuit (PP) and independent component analysis (ICA) to multi-dimensional and dependent non-Gaussian components. Indeed, seminal approa...

متن کامل

Principal Component Analysis on non-Gaussian Dependent Data

In this paper, we analyze the performance of a semiparametric principal component analysis named Copula Component Analysis (COCA) (Han & Liu, 2012) when the data are dependent. The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. We study the scenario where the observations are drawn from non-i.i.d. processes ...

متن کامل

Some experiments on independent component analysis of non-Gaussian processes

This paper reports on numerical experiments on the ‘independent component analysis’ (ICA) of some nonGaussian stochastic processes. It is found that the orthonormal basis discovered by ICA are strikingly close to wavelet basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2010

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2010.2046229